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Abstract—We develop analytic expressions for the impulse re-
sponse and kickout pulses of a simple sampling circuit that incor-
porate the nonlinear junction capacitance of the sampling diode.
We examine the effects of both the time-varying junction capaci-
tance and conductance on the impulse response and kickout pulses,
and discuss their impact on the accuracy of the nose-to-nose cali-
bration technique.

Index Terms—Analytic model, nonlinear diode capacitance,
nose-to-nose calibration, sampling oscilloscope.

I. INTRODUCTION

WE DEVELOP a small-signal model for a balanced
two-diode sampling circuit and derive closed-form

expressions for the circuit’s impulse response and kickout
pulses. The small-signal model incorporates both the sampling
diode’s time-varying junction capacitance and conductance.
We examine separately the effects of the time-varying junction
capacitance and conductance on the impulse response and
kickout pulses, which we define later, and show that the non-
linear junction capacitance of the sampling diode affects the
impulse response and kickout pulses in very different ways. We
also examine the interaction of the external sampling circuitry
with the time-varying conductance, and show that the total
response of the sampler cannot be described as the convolution
of two separate responses, one of the diode and one of the
external circuitry. Finally, we discuss the implications of these
results on the accuracy of the nose-to-nose calibration, which is
based on the hypothesis that the impulse response and kickout
pulses have the same shape.

[1]–[3] developed analytic expressions for the impulse re-
sponse and kickout pulses of sampling circuits with purely resis-
tive diodes and constant junction capacitance. The authors con-
cluded that asymmetry in the small-signal diode conductance
causes small differences in the kickout pulses and impulse re-
sponse that cannot be corrected for by the nose-to-nose calibra-
tion.

Here, we develop a small-signal model for the sampling cir-
cuit of Fig. 1 that incorporates a time-varying diode capacitance.
While this analytic model cannot account for the complicated
parasitics that may be incorporated in the SPICE models de-
scribed in [1] or [4]–[6], it does extend the analytic models of
[1]–[3], and offers a useful intuitive understanding of the roles
of nonlinear diode junction capacitance and conductance asym-
metry in sampler operation. In particular, the model demon-
strates that when the strobe fires, the change in the diode’s junc-
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Fig. 1. Simplified schematic diagram of the two-diode sampling circuit.v is
the diodes’ reverse-bias voltage. Kickout pulses are generated when dc offset
voltagev is nonzero. The solid arrows indicate the direction of the strobe
current through the diodes. The dashed arrows indicate the direction of the
small-signal current due to a voltage at the input through the diodes.

tion capacitance acts as an additional source for the kickout
pulses, but leaves the circuit’s impulse response unchanged.
The manner in which the diode’s junction capacitance affects
these two functions results in additional differences between the
kickout pulses and impulse response that are not corrected for
by the nose-to-nose calibration procedure [6].

II. NOSE-TO-NOSECALIBRATION

Fig. 1 contains a simplified schematic diagram of a two-diode
sampling circuit. The bias supplies shown in this figure place the
diodes in a high-impedance reverse-biased state until the strobe
fires.

Each time the strobe fires, the strobe pulse forward biases the
two diodes, turning them on and lowering their impedances for
a short time. Since the large-signal strobe current is in the same
direction (shown by solid arrows in Fig. 1) and the circuit is
balanced, the effects of the strobe current cancel at the input of
the sampling circuit.

While the diodes are in their low-impedance state, a nonzero
voltage at the input port of the sampling circuit causes a net
charge to flow from the input port through the diodes to the hold
capacitors. This small-signal current (shown by dashed arrows
in Fig. 1) flows in opposite directions in the two diodes, and
adds a net charge on the hold capacitors. The sampler digitizes
the average voltage on the two hold capacitors after the strobe
fires. This digitized voltage sample is proportional to the net
charge transferred to the hold capacitor when the strobe fired,
and ideally will be proportional to the voltage at the input port
when the strobe fired.

In operation, a repetitive train of identical pulses is applied
to the input port. The sampling circuit is used to reconstruct the
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(a) (b)
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Fig. 2. Small-signal models for: (a) kickout generation, (b) sampling operation, (c) the diode, and (d) an equivalent model for both kickout generation and
sampling operation. In the equivalent model,v = v for kickout generation andv = v (t; �) = [R =(R + R )] �(t + �) when determining the impulse
response.

shape of an individual pulse from the input pulse train. This is
accomplished by firing the strobe at a time later than it fired
in the previous cycle of the input pulse train. In this way, the
strobe’s firing time slowly “scans” across the input pulse being
sampled. Since each successive digitized voltage sample corre-
sponds to the input voltage at a time later than the previous
voltage sample, the shape of the pulses in the input pulse train
can be reconstructed from the digitized output voltage record.

For small input signals, the output of the sampling circuit
can be described as a convolution of the input signal and the
“impulse response” of the sampler, which is carefully defined
and explained in [4]. The first objective of this paper will be
to develop an analytic expression for the impulse response of
the sampling circuit shown in Fig. 1 in terms of the diode’s
small-signal conductance and junction capacitance .

Rushet al. [7] noted that when the dc offset voltage of
the sampling circuit of Fig. 1 is nonzero, it creates a train of
“kickout” pulses at its input port with a shape similar to that of
the circuit’s impulse response. These pulses are generated by
current flowing from the hold capacitors through the diodes to
the input. Like the small-signal input due to voltages at the input,
these currents are antiparallel. The nose-to-nose calibration [6]
exploits the similarity of these kickout pulses and the circuit’s
impulse response to derive an estimate of the impulse response
from measurements.

To perform a nose-to-nose calibration, we set the dc offset
voltage of one sampling circuit to a nonzero value so that it
creates a train of kickout pulses at its input port. These pulses
are fed into the input port of a second sampling circuit operating
in its conventional sampling mode.

When the two samplers are identical and impedance matched,
and communicate through a transmission line of sufficient
length, the nose-to-nose calibration reconstructs the impulse
response of the circuits as the inverse Fourier transform of
the square root of the Fourier transform of their nose-to-nose
response. If the kickout pulses and impulse response have
identical shapes, the nose-to-nose calibration accurately recon-
structs the impulse response of the sampler, as demonstrated in
[1]–[4].

In practice, the samplers are never identical, and the
nose-to-nose calibration procedure requires three sampling

oscilloscopes, additional measurements, and complex analyses
to account for differences between the samplers, impedance
mismatches, and imbalances in the sampling circuitry [1]–[3].
Nevertheless, the fundamental supposition of these practical
three-sampler nose-to-nose calibrations is still that the kickout
pulses generated by the sampling diode have the same shape as
the sampler’s impulse response.

III. SMALL -SIGNAL MODEL

Fig. 2 shows the small-signal model corresponding to the
sampling circuit of Fig. 1. The two balanced sampling arms,
each of which contains a single sampling diode, hold capacitor,
and bias circuit, have been combined, as was done in [2] and [3].

The small-signal model is based on the assumption that the
capacitance of the hold capacitor is large, and can be treated
as a short circuit for all frequencies but dc. The resistanceis
equal to , the resistance of the parallel com-
bination of the sampling circuit’s input resistance and the
resistance of its load, and is usually about 25. The two
diodes of Fig. 1 appear in parallel in the small-signal model of
Fig. 2, thus, the diode’s spreading resistance, time-varying
conductance , and time-varying capacitance are those
of the two diodes placed in parallel. That is, is one-half of
the spreading resistance of a single sampling diode, andand

are twice the small-signal conductance and capacitance of
the individual diodes in the circuit.

Fig. 2(a) and (b) shows small-signal models for kickout
generation and sampling operation. Both the junction capaci-
tance and conductance of the Schottky-barrier diodes used in
real samplers change with applied voltage. The result is both a
time-varying and generally asymmetric small-signal junction
capacitance and conductance. Fig. 2(c) shows a small-signal
model for the diode that includes the time-varying conductance
and capacitance of the diodes.

Both the small-signal kickout circuit of Fig. 2(a) and the
small-signal sampling-operation circuit of Fig. 2(b) reduce to
the equivalent small-signal circuit of Fig. 2(d), with different
excitation voltages . During both kickout generation and
sampling operation, Kirchhoff’s laws require that

(1)
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where the diode’s small-signal voltage and current are related
by

(2)

Here, , the small-signal charge stored in the diode’s junction
capacitance, is equal to , the product of the junction capac-
itance and small-signal voltage across the diode junction. The
values of and in (2) are determined by the large strobe
signal, and can be considered to be independent of the small
input signal . On the other hand, the small-signal voltage
and small-signal current are the responses of the circuit to the
small input signal , and depend on the small-signal excitation
of the circuit.

Combining (1) and (2), we obtain the following differential
equation in :

(3)

This is a classic linear first-order differential equation, and has
the solution [8]

(4)

where

(5)

(6)

, , and is some
initial time at which is known.

IV. K ICKOUT PULSES

When the sampling circuit is generating kickout pulses, the
small-signal input voltage is equal to the dc offset voltage

. The kickout voltage at the input port of the sampler
is

(7)

where is the voltage across the diode junction andis the
current flowing through the diode junction. To find the normal-
ized kickout voltage defined by

(8)

we substitute (4) into (7) to obtain

(9)

where we have chosen the timeto be a large negative time
when . To obtain the second form in (9), we used

and performed an integration by parts.

V. IMPULSE RESPONSE

To determine the impulse responseof the sampler at a time
, we apply a Dirac delta function at the input of the sampling

circuit at time and fire the sampler’s strobe at time .
We then integrate the total charge moved onto the hold capacitor
during the sampling cycle to calculate the value of .

This operation is equivalent to firing the sampling circuit’s
strobe at a fixed time and applying the Dirac delta function at
the input of the sampler at time . Firing the strobe at a
fixed time is more convenient to treat analytically, and we will
use this approach here. When the strobe is fired at a fixed time
and the delta function turns on at time , the small-signal input
voltage is equal to , where

(10)

Here, is the time at which the impulse is applied to the sam-
pling circuit, is the time at which the impulse response is de-
termined, and is the Dirac delta function.

The impulse response at time is proportional to the extra
charge stored on the hold capacitors due to the small-signal
input during one sampling cycle. That is, is [2], [3]

(11)

where is the response to the input and
is the capacitance of the hold capacitor.

To find the normalized impulse responsedefined by

(12)

we substitute from (10) into (4) and integrate to obtain

(13)

We then substitute this expression forand the expression for
from (10) into (1) to obtain

(14)
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Fig. 3. The impulse response and a kickout pulse for a symmetric conductance
and constant diode capacitance. In this case, the normalized impulse response
and kickout pulse are identical.

Performing the integral in (11), we obtain the result

(15)

and we have succeeded in obtaining closed-form expressions
for both the impulse response of the sampling circuit and the
kickout pulses it generates.

VI. CONSTANT CAPACITANCE

In simple cases, we can solve (9) and (15) analytically. As we
shall see, this exercise is particularly insightful.

When is constant and is symmetric ,
, and the nose-to-nose calibration correctly recon-

structs the impulse response [1]–[3]. Fig. 3 illustrates this, and
plots and for the symmetric defined by S
when and elsewhere. For this example,
we set the capacitance fF, , and

ps. The plot shows that, as [1]–[3] predict, the normal-
ized kickout pulses and impulse response are equal. However,

is not equal to . This is true only when .
There is an interesting observation to be made here: the

kickout waveform and impulse response rise rapidly to the
value (see Appendix I) when the diodes turn on
at ps, but decay more slowly to zero when
the diodes turn off again at ps. This shows that
the RC time constant of the circuit changes when the diode
conductance changes.

Fig. 4 plots and for the asymmetric defined by
S in the region , S in the

region , and elsewhere. For this example,
we set equal to 25 , and equal to 10 ps and, to better
illustrate theRC time constants, the diode junction capacitance

equal to 200 fF. This figure illustrates not only the time-re-
versal of the impulse response predicted by [1]–[3] and inherent
in the solution for the impulse response (15), but the differences
in theRCtime constants associated with the kickout pulses and
impulse response. It is evident that the leading edge of the im-
pulse response rises much more sharply than the leading edge
of the kickout pulse. As the analytic solutions tabulated in Ap-
pendix I show, this is because the rate at which the leading edge
of the kickout pulse increases is set by the diode’s conductance

Fig. 4. A normalized kickout pulse and the impulse response for an
asymmetric diode conductance and constant diode capacitance.

Fig. 5. A normalized kickout pulse and the impulse response for the diode
conductance and capacitance plotted in Fig. 6. We setR +R equal to 25
.

of 0.1 S during the time interval , while the rate
at which the leading edge of the impulse response increases is
set by the diode’s conductance of 0.4 S during the time interval

.
Again, we see that theRC time constant associated with

charging the diode’s junction capacitance changes with time.
We thus conclude that we cannot describe the kickout pulses or
impulse response of even these simple sampling circuits as the
convolution of a time-varying aperture response
or and the time-invariant transfer function
of an externalRCcircuit, as might be expected. This is because
the RC time constant associated with charging the diode’s
junction capacitance is modified by the time-varying diode
conductance and, thus, becomes a time-varying, rather
than time-invariant, quantity. These conclusions are consistent
with those of [2] and [3].

VII. T IME-VARYING CAPACITANCE

Fig. 5 plots the impulse response and a kickout pulse for the
capacitance and conductance waveforms shown in Fig. 6. This
figure illustrates the role of the time derivative of the
diode’s junction capacitance, also discussed in Fig. 6. Notice
that the leading edge of the kickout pulse begins to rise as soon
as becomes positive at ps.

The effect of the change in diode junction capacitance on
the kickout pulse can be understood by considering the charge
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Fig. 6. Time-varying diode conductanceg(t) and capacitanceC(t)
corresponding to the normalized kickout pulse and impulse response plotted
in Fig. 5.

stored in the junction capacitance. When the strobe fires, the
diode is forward biased, and its depletion region narrows, in-
creasing the diode’s junction capacitance. Since the sampling
circuit is balanced, these large-signal strobe currents cancel at
the input.

However, as the diode’s junction capacitance increases sud-
denly, the small-signal charge stored in the junction
capacitance is conserved. As a result, the small-signal voltage

across the junction must decrease suddenly to compensate.
This sudden drop in generates the early rise in the kickout
pulse seen over the time region ps ps in Fig. 5.
Likewise, the negative overshoot of the kickout in Fig. 5 is due
to the drop of diode junction capacitance back to its reversed-bi-
ased value of over the time region ps ps.

Fig. 5 also shows that the changing does not affect the
impulse response over the time region ps ps.
This is because the digitized voltage on the hold capacitor at the
end of the sampling cycle depends on the total charge moved
onto the hold capacitor during the sampling cycle, and the net
charge transferred to the hold capacitor through the diode is
zero.

This can be understood with the following argument. Due
to the time reversal in (15), the time region ps

ps of the impulse response corresponds to exciting the sam-
pling circuit with an impulseafterthe sampling diode has turned
off. Since the diode has already turned off before the excita-
tion starts, has already returned to zero, and no extra elec-
trons flow through the diode’s junction conductance due to the
small-signal excitation.

Not only are electrons unable to move across the diode’s junc-
tion conductance, but they are also unable to move through the
diode’s junction capacitance. Thus, the net charge transferred to
the hold capacitor must be zero. In other words, while electrons
can be stored temporarily on the moving “plates” formed by the
depleted region in the diode’s junction, resulting in short-lived
currents in the circuit, no net charge can be moved through the
junction capacitance to the hold capacitor. As a result, the im-
pulse response, which is proportional to thenetcharge moved
through the diode to the hold capacitor, must be zero.

A sampling circuit with and capacitance shown
in Fig. 6, illustrates this idea nicely. The circuit’s equivalent cir-

Fig. 7. Normalized kickout pulse and the impulse response for a zero diode
conductance and the capacitance plotted in Fig. 6 The circuit drawn in the figure
corresponds to the small-signal model for sampling operation. The total charge
inside the dashed line is conserved. We setR +R equal to 25
.

cuit, normalized impulse response, and kickout pulse are shown
in Fig. 7. Charge conservation requires that the total charge on
the bottom plate of the diode’s junction capacitance and the top
plate of hold capacitor, which are enclosed by the dashed line in
the figure, be conserved throughout the sampling cycle. There
is nothing to prevent charge on these two capacitor plates from
“sloshing” back and forth between the two capacitor plates, gen-
erating the kickout pulse shown in Fig. 7. However, charge con-
servation does not allow the net charge on the two capacitor
plates to change during the sampling cycle. Thus, no net charge
is transferred onto the hold capacitor during sampling operation,
and the impulse response is identically equal to zero.

VIII. C ONCLUSION

We have developed an analytic small-signal model of a
balanced two-diode sampling circuit that includes time-varying
diode junction capacitance and conductance. We used this
model to explore the effects of the diode’s junction capacitance
and conductance on the kickout pulses and impulse response of
the sampling circuit, which the nose-to-nose technique assumes
are identical.

We found that when the diode conductance is symmetric
and the junction capacitance is either zero or constant, the
normalized kickout pulses and impulse response are identical.
However, when the diode conductance is asymmetric, the time
reversal inherent in (15) leads to differences in the kickout
pulses and impulse response that cannot be corrected for by the
nose-to-nose calibration. These conclusions are consistent with
those of [1]–[3].

We found that it is not possible to express the kickout pulse
and impulse response as the simple convolution of an aperture
circuit function and a time-invariant response function of the
external circuitry. This is because the sampling diodes interact
directly with other circuit elements that are physically close
enough to be affected by the diodes’ time-varying conductance
and capacitance during the sampling aperture [2], [3]. We con-
clude that linear circuit elements in close proximity to the diode
may need to be included in nonlinear circuit models of the sam-
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pling circuit, if the differences in the kickout pulses and impulse
response are to be precisely modeled.

We also saw that changes in the diode’s junction capacitance
play a direct role in the generation of kickout pulses. This is
because the kickout is proportional to theinstantaneoussmall-
signal current flowing through the diode, which depends on
changes in the diode’s junction capacitance. On the other hand,
the impulse response is related to thenetcharge transferred to
the hold capacitor during a complete sampling cycle. Since elec-
trons are unable to move through the diode’s junction capaci-
tance, all of this charge must move through the diode’s conduc-
tance. Therefore, the junction capacitance has little effect on the
impulse response. These two contrasting physical phenomena
can give rise to significant differences in the sampler’s kickout
pulses and impulse response. As a consequence, we conclude
that accurate models of the sampling circuitry must include the
diode’s nonlinear junction capacitance.

APPENDIX I
CONSTANT CAPACITANCE

Here, we summarize the analytic solutions for the kickout
pulses and impulse response when the junction capacitance

is constant. The conductance function is equal to zero
for , equal to for , equal to for

, and equal zero for . These solutions
correspond to the kickout pulses and impulse responses plotted
in Figs. 3 and 4. The solution for a normalized kickout pulse

is shown in (16) at the bottom of this page, and the solution
for the normalized impulse responseis shown in (17) at the
bottom of this page, where , ,
and .

APPENDIX II
TIME-VARYING CAPACITANCE

We also obtained analytic solutions for the kickout pulses and
impulse response when the diode conductance and capacitance
take the form illustrated in Fig. 6. Here, equals zero for

for , and zero again for
, while equals for , increases linearly

from to over the region , equals
over the region , decreases linearly

from to over the region , and equals
for . This case corresponds to the kickout pulse and

impulse response plotted in Fig. 5.

A. Normalized Kickout Pulses

For , we have . In the region
, the solution for is

(18)

where

(19)

In the region , is

(20)

(16)

(17)
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where . In the region
is

(21)

where

(22)

Observe that is not equal to . This is because describes
the charging of the capacitor as its capacitance increases, while

describes the discharging of the capacitance while its capac-
itance is decreasing. In the region

(23)

B. Normalized Impulse Response

In the region . In this time region,
the impulse arrives after the diode conductance has reset itself
to zero, and the impulse response is zero. This region also in-
cludes the times and, thus, does not play a role
in determining the sampler’s impulse response. In the region

is

(24)

In the region is

(25)

In the region

(26)
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